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PREPARATION OF DIASTEREOMERIC THYMIDINE 3',5'-CYCLIC METHYLPHOSPHONATES.
ASSIGNMENT OF RP AND Sp CONFIGURATIONS BY ]3C NMR

Gurdip S. Bajwa and Wesley G. Bentrude*
Department of Chemistry, University of Utah, Salt Lake City, UT 84112

Summary: The diastereomers of thymidine 3',5'-cyclic methylphosphonate have been prepared
and separated. A use of 130 NMR for the assignment of their phosphorus configurations is demon-
strated which should be generally applicable to P-derivatized cyclic nucleotides.

3',5'-Cyclic nucleoside monophosphates, e.g. cAMP and cGMP, play a central regulatory role in
cell metabolism. Intense recent interest in analogs of the naturally-occurring cyclic nucleo-
tides,] including those derivatized at phosphorus, {e.g., 1—5) stems from their potential as mimics
or antagonists,] melecular receptor-site probes,” or storage forms aof the parent cyclic nucleo-
tides.?
cursors to chiral 5'- and 3',5'-cyclic phosphorothioates and the corresponding 180—1abe1ed cyclic

Furthermore, certain 3',5'-cyclic nucleoside N-phenyl phosphoramidates4 serve as pre-

diesters (formed on subsequent stereospecific reactions), all useful in study of the stereochemistry
of enzymatic processes. A wide variety of functionality at phosphorus is necessary for these
purposes. Furthermore, ready assignment of phosphorus configurations, R or SP’ to the indivi-
dual diastereomers is imperative. We report here a facile, high-yield preparatxon of a 3',5'-
cyclic nucleoside alkylphosphonate (3), a type of functionality not previously ava11ab1e,5 and a

generally applicable, straightforward, 13 C NMR method for assignment of phosphorus configuration.
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Methanolysis of phosphoramidite 1, as previously reported,6 gives a 95% isolated yield of
methyl phosphite, 2, as a 60/40 mixture of diastereomers. On reaction with Mel as solvent at room
temperature, 2 is Eonverted to a 50/50 mixture of diastereomeric methylphosphonates, 3 (]3P NMR at
26,2 and 30.2 ppm downfield from external OPA in DMSO—dG), in 80-90% yields. Medium pressure
liquid chromatography {85/15 Et0OAc/EtOH on 5102) separates diastereomers 3a and 3b quickly and
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near-quantitatively giving from 1g of 2 on one mplc pass 200-400 my amounts of each methylphos-

phonate.7

A§§1gnment of phosphorus configurations to 3a (RP) and 3b (SP) were made by comparisons of
C NMR data (Table I) with those of two model methylphosphonates: 4, whose structure had

been previously determined unequivocally by an X-ray crystallographic stud; of the cis isomer

(t-Bu and Me cis);8 and, 5, also well studied structura]]y9 (NMR data from ref. 10.) 13

their

NMR parameters for g and 5 appear in Figure 1. The ]3C chemical shifts for C4. and C5. of 3a and

§9 were assigned by single-frequency proton decoupling techniques. Trans-4 and cis-5 are known
from PMR data to populate in solution the chair conformations shown in Figure [. For cis-4

and trans—§, the conformers shown are highly populated, although some conformational averaging
occurs.

Table 1. '3C NMR Parameters for 3a and 3b

—— 33— e 3b ——y

1 13
carbon 8% g, 1z) s Jop_(H2)
CH.P 9.16 137.0 11.58 142.0
1 83.03 <0.5 83.18 <0.5
2 34.13 7.8 34.23 7.7
3" 75.93 4.5 73.86 5.2
4 73.12 8.5 73.61 6.4
5 68.62 8.5 67.94 8.6

%In DMSO—dG. Chemical shifts in ppm downfield from internal TMS.

Notable correlations amongst the 13C parameters of 3-5 which allow phosphorus configurations
to be assigned are the following. The resonance of the ;x;a1 methyl substituent on phosphorus is
upfie]d-shifted in each pair of isomers. This appears to be a normal y-gauche effect. A smaller
I J x also is associated with the axial methyl. 12 Uniike the methyl carhons, Cy and C6 of 4 and
5 and C3. and Cgr of 3 de not display the novmal y-gauche effect but instead are downfield- sh1fted
by the axial methyl on phosphorus. Apparently, phosphoryl oxygen has an important role in deter-

mining the chemical shifts of the v carbons. The latter sort of correlation looks to be general
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for compounds like 4 and 5 with a variety of substitutuents on phosphorus except H.]3’]4

It also
can be noted for the thymidine 3',5'-cyclic methyl Qhosghates15 and N ,N-dimethylphosphorami-

dates.4’12C (The 3' carbon shifts are especially affected.) However, this correlation and its

usefulness in assigning phosphorus configurations in 1,3,2-dioxaphosphorinanes has not previously
been pointed out.

The relative 3‘IP chemical shifts (DMSO-dG) determined for 3a (8 26.2) and 3b (5 30.2) are
also supportive of the phosphorus configurations assigned, the gzial—methy1 diagzereomer having
the higher-field resonance. This chemical shift order, also seen for 4 and 5 (Figure I), is
consistent with what is normally, though not without exception, found ;or Z-Sxo and 2-thio-2-
substituted—],3,2—dioxaphosphorinanes.]q However, with the 13C NMR correlations noted above, one

need not rely on “'P evidence alone to assign phosphorus configurations in such ring systems.
31
P

This could be especially impartant in cases in which diastereomers have closely similar
chemical shifts.
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